Journal of Organometallic Chemistry, 192 (1980) 177–182 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

PHOSPHAZINE

VIII *. IR- UND NMR-SPEKTREN VON α-KETOTRIPHENYLPHOSPHAZINEN

H.J. BESTMANN *, FOUAD M. SOLIMAN ** und KURT GEIBEL

Institut für Organische Chemie der Universität Erlangen-Nürnberg, 8520 Erlangen, Henkestr. 42 (B.R.D.)

(Eingegangen den 19. Oktober 1979)

Summary

The results of IR- and NMR-spectroscopic investigations on α -ketotriphenylphosphazines are reported. The structure of these compounds is discussed.

Zusammenfassung

Es wird über die Ergebnisse IR- und NMR-spektroskopischer Untersuchungen an α -Ketotriphenylphosphazinen berichtet. Die Struktur dieser Verbindungen wird diskutiert.

Aliphatische Diazoverbindungen I vereinigen sich mit Triphenylphosphin II zu Triphenylphosphazinen III [2] die sich unter anderem durch die mesomeren Formen IIIA und IIIB beschreiben lassen [3]. III steht mit seinen Komponenten I und II in Lösungen im Gleichgewicht, wobei elektronenanziehende Substituenten R¹ und R² die Rückspaltung erleichtern [3,4]. Sind R¹ und R² Wasserstoff, Alkyl- oder Arylgruppen, so reagieren die Phosphazine III mit Methyljodid zu den Phosphoniumsalzen IV, während α -Ketotriphenylphosphazine durch Methyljodid in Diazoketone VI und Methyltriphenylphosphoniumjodid VII zerlegt werden [4] (Schema 1).

IR- und NMR-Untersuchungen sollten weiteren Aufschluss über die Struktur von Phosphazinen liefern ***. Wir berichten im Folgenden über diesbezügliche

ţ

^{*} VI. und VII. Mitteilung siehe Ref. 1.

^{**} Ständige Adresse National Research Centre, Dokki-Cairo, Ägypten.

^{***} Bisher wurde nur über NMR-Spektren des aus Diazomethan und Triphenylphosphin erhältlichen Formaldehydtriphenylphosphazin (III, $\mathbb{R}^1 = \mathbb{R}^2 = \mathbb{H}$) berichtet [5].

SCHEMA 1

Messergebnisse an α -Ketotriphenylphosphazinen V, für die die Beteiligung einer mesomeren Grenzform VB zu diskutieren ist.

Die Tabellen 1 und 2 erlauben einen Vergleich der chemischen Verschiebungen des α-Protons in Diazoketonen VI und den daraus erhältlichen Phosphazinen V. In den Verbindungen VI gibt dieses Proton bei Raumtemperatur Anlass zu einem unscharfen Signal in dem für Diazocarbonylverbindungen bekannten Bereich [6] zwischen δ 4.70 und 6.15 ppm. Die Unschärfe des Signals geht auf die gehinderte Rotation zwischen C-1 und C-2 zurück [6]. In den zugehörigen Phosphazinen V absorbiert das H-Atom in dem für ---CH=N-Pro-tonen zu erwartenden Bereich um δ 7.8–8.3 ppm und erscheint durch long-

		P(C
		HH
		ğ
		ž
		, N
		ZIN
		HA
• .		OSP
		LPH
		ž
		PHE
		TRI
		OT 0
		N-KI
	•	ž
		≥ z
		E E
		ġ
ы С		NMR
ILLI	•	ê
ABE		5
Ē		H

6H5)3

1 .

(IR In K)	Br. ¹ H-NMR und ¹³ C-N	MR: CDCl ₃ , Th	AS als innerer	Standard. ³¹ P-N	IMR: CDCl ₃ , H ₃ P	O ₄ (externer St	andard))		
	R	II		1H		13C			31p
		r(CO)	r(CN)	1 _H (ppm)	J(HP) (Hz)	CH (ppm)	³¹ P_1 ³ C (Hz)	CO (ppm)	(mqq)
Va	CH3	1650	1510	7.86	2,3	148.0	45.8	198.7	23,376
۲p	CH ₃ (CH ₂) ₂	1600	1510	7.86	2.2	147.6	45.0	201.3	23,068
Vc	CICH ₂	1650	1495	7.88	2,3	145,0	47.3	190,0	24,143
ρĄ	C ₆ H ₅ CH ₂	1635	1500	7.82	2,3	147.1	45.8	197.6	1
Ve	C6H5	1616	1615	8.28	2,5	147.3	46.5	191.1	23,898
λί	p-CH ₃ C ₆ H ₄	1610	1510	8.27	2,5	147.7	46.5	190.5	I
Vg	p-CH3OC6H4	1650	1510	8.29	2,3	147.7	46.5	189.2	l
٨h	p-NO2C6H4	1615	1510	8.29	2,3	146.8	47.6	189.4	25,292
2	C ₂ H ₅ O	1705	1530	7.84	2,2	137.7	47.6	165.1	22,183
ΪA	C ₆ H ₅ O	1690	1530	8.14	2,3	136.5	48.8	163.6	26,664
Vk	p-N02C6H40	1720	1520	8,10	23	136.1	49.6	162.6	23,521

179

.

TABELLE 2 IR UND NMR-DATEN VON DIAZOKETONEN VI

(IR in F	CBr.	1 H-I	NM	R	une	11	³ C-NMR:	CDCl ₃ ,	, TMS als innerer Standard)	

No.	R	IR	1H	13 _C		
		ν(CO)	(ppm)	CH (ppm)	CO (ppm)	
VIa	СН3	1640	5.36	55.1	192.2	
VЪ	CH ₃ (CH ₂) ₂	1640	5.44	54.4	195.3	
VIc	CICH ₂	1635	5.92	55.1	188.0	
Vīđ	C6H5CH2	-	5.08			
VIe	C ₆ H ₅	1610	5.98	54.3	186.3	
VIf	p-CH ₃ C ₆ H ₄	1600	6.01	53.8	186.0	
VIg	P-CH3OC6H4	1600	5.83	53.4	185.1	
VIh	P-NO2C6H4	1605	6.12	55.8	184.0	
VIi	C ₂ H ₅ O	1690	4.78	46.2	166.9	
VIj	C ₆ H ₅ O	1700	4.78	46.8	165.1	
VIk	p-NO ₂ C ₆ H ₄ O	1680	5.04	47.3	164.2	

range Kopplung mit dem Phosphor als scharfes temperaturunabhängiges Dublett (${}^{4}J(PH)$ 2.3 Hz). Die Tieffeldverschiebung für R = Alkyl oder Aryl beträgt 2-2.7 ppm, während für R = OR¹ ca. 3 ppm gefunden werden.

In der Tabelle 1 sind die Ergebnisse der ³¹P-Kernresonanzmessungen an den Phosphazinen V aufgeführt. Die Absorptionen zwischen δ 23–26.2 ppm (H₃PO₄ als externer Standard) zeigen das Vorliegen einer Verbindung mit tetravalenter Phosphoniumgruppierung an.

In der ¹³C-Kernresonanz absorbieren die C-1-Atome der α -Diazocarbonylverbindungen VI relativ hoch zwischen 45–60 ppm [7]. Durch die Phosphazinbildung tritt eine Tieffeldverschiebung um ca. 90–94 ppm auf. Die C-1 Resonanz liegt mit 136–148 ppm in einem Bereich, der für die C=N-Doppelbindung charakteristisch ist. Die ³J(PC)-Kopplung des C-1 in den Verbindungen V beträgt 45–48 Hz.

In den Phosphazinen V ist die Absorbtion des Carbonyl-C-Atoms im Vergleich zu den Diazoketonen VI um 2–6 ppm nach tieferem Feld verschoben.

In den IR-Spektren der Diazoketone VI (Tabelle 2), aufgenommen in KBr, findet man für die Carbonylgruppe eine Bande zwischen 1600 und 1640 cm⁻¹, wenn R = Phenyl oder Alkyl ist. Sie wird für R = OR¹ nach 1680–1700 cm⁻¹ verschoben. In dem gleichen Bereich liegen die breiten, oft aufgespaltenen C=O-Banden der Phosphazine V. In ihren IR-Spektren erscheint zusätzlich im erwartungsgemäss erniedrigten Frequenzbereich einer zur Carbonylgruppe konjugierten C=N-Doppelbindung eine Bande zwischen 1495 und 1515 cm⁻¹ bei R = Aryl oder Alkyl und zwischen 1520 und 1530 cm⁻¹ für R = OR¹.

Aus den spektroskopischen Daten ziehen wir folgende Schlussfolgerungen: Die NMR-Daten deuten auf eine überwiegende Beteiligung der Resonanzstruktur VA bezüglich der Ladungsverteilung hin. Die Tieffeldverschiebung der ¹³C-Signale der C=O-Gruppe in V gegenüber VI, zeigt, dass die Triphenylphosazingruppe den direkt gebundenen Kohlenstoff weniger stark negativiert als die Diazogruppe.

Die IR-Spektren, die das Bindungssystem stärker widerspiegeln, zeigen

jedoch deutlich durch die bathochrome Verschiebung der C=O-Bande und der C=N-Bande, dass sowohl in V als auch in VI die B-Form den Bindungszustand widergeben kann. Die gleichsinnige Verschiebung von $\nu(CO)$ und $\nu(C=N)$ beim Übergang von R = Alkyl bzw. Aryl zu R = OR¹ in V lässt erkennen, dass das Bindungssystem O=C-C=N- erwartungsgemäss gekoppelt ist. Es ist jedoch zu berücksichtigen, dass die IR-Spektren in KBr durch intermolekulare Wechselwirkungen und Kristallgittereffekte beeinflusst werden können.

Die Temperaturabhängigkeit der ¹H-NMR-Spektren von VI, die bei V nicht auftritt, deutet darauf hin, dass VIB stärker zum Zuge kommt als VB.

Die δ -Werte der ³¹P-Spektren von V werden beiden Grenzstrukturen gerecht. Sie liegen im Bereich wie die der Acylylide VIII, die durch die Mesomerie VIIIA \leftrightarrow VIIIB beschrieben werden können (Schema 2).

SCHEMA 2

Die Analogie der spektroskopischen Befunde zwischen V und VIII ist evident. Die ¹³C-Kernresonanzspektren zeigen weitgehend das Vorliegen einer Ladungsverteilung, wie sie durch VIIIA widergegeben wird, an [8]. Die Temperaturabhängigkeit der ¹H-NMR-Spektren [9] sowie die tiefe Lage der C=O-Bande in den IR-Spektren [10] gibt der Bedeutung des Bindungszustandes von VIIIB Ausdruck.

Experimenteller Teil

Die IR-Spektren wurden in KBr aufgenommen. Lösungsmittel für die NMR-Spektren war Chloroform. ¹H-NMR: 60 MHz (JEOL C 60 HL); ¹³C-(25 MHz)und ³¹P-(40 MHz)-NMR-Spektren wurden mit Hilfe der PFT-Technik unter Protonenrauschentkopplung mit einem JEOL PS 100-Gerät und einem 24K Computer (16K Datenspeicher) der Firma Texas Instruments aufgenommen.

Bei den ¹H- und ¹³C-Spektren diente Tetramethylsilan als innerer Standard, bei den ³¹P-NMR-Spektren 85-proz. H_3PO_4 als externer Standard.

 α -Diazoketone VI wurden nach literaturbekannten Standardmethoden dargestellt.

 α -Ketotriphenylphosphazine V: Darstellung nach Ref. 5 in Äther.

Folgende Verbindungen wurden neu hergestellt: Propionyldiazomethantriphenylphosphazin (Vb): Ausb. 98%, Schmp. 92°C (Zers.). Gef.: C, 73.85; H, 6.05; N, 7.38. $C_{23}H_{23}N_2OP$ (374.4) ber.: C, 73.79; H, 6.15; N, 7.48%.

Chloroacetyldiazomethantriphenylphosphazin (Vc): Ausb. 95%, Schmp. 114°C (Zers.). Gef.: C, 65.96; H, 4.73; N, 7.35. C₂₁H₁₈N₂OPCl (380.8) ber.: C, 66.27; H, 4.73; N, 7.35%.

p-Methyl-benzoyldiazomethantriphenylphosphazin (Vf): Ausb. 90%, Schmp.

93°C (Zers.). Gef. C, 76.67; H, 5.31; N, 6.59. C₂₇H₂₃N₂OP (422.5) ber. C, 76.77; H, 5.45; N, 6.63%.

Phenoxycarbonyldiazomethantriphenylphosphazin (Vj): Ausb. 93%. Schmp. 129°C (Zers.). Gef.: C, 73.70; H, 4.81; N, 6.47. $C_{26}H_{21}N_2O_2P$ (424.4) ber.: C, 73.58; H, 4.95; N, 6.60%.

p-Nitro-phenoxycarbonyldiazomethantriphenylphosphazin (Vk): Ausb. 89%, Schmp. 125°C (Zers.). Gef.: C, 65.91; H, 4.28; N, 8.37. $C_{26}H_{20}N_3O_4P$ (469.4) ber.: C, 66.52; H, 4.26; N, 8.95%.

Dank

Wir danken der Alexander-von-Humboldt-Stiftung für ein Stipendium an Fouad M. Soliman und Herrn Dr. A. Haag für anregende Diskussion.

Literatur

- 1 VII. Mitteil. H.J. Bestmann und O. Klein, Tetrahedron Lett., (1966) 6181, VI. Mitteil. H.J. Bestmann und O. Klein, Liebigs Ann. der Chemie 676 (1964) 97.
- 2 H. Staudinger und J. Meyer, Helv. Chim. Acta, 2 (1919) 619.
- 3 H.J. Bestmann, H. Buckschewski und H. Leube, Chem. Ber., 59 (1959) 1345.
- 4 H.J. Bestmann und L. Göthlich, Liebigs Ann. Chem., 655 (1962) 1.
- 5 T.A. Albright, W.J. Freeman und E.E. Schweizer, J. Amer. Chem. Soc., 97 (1975) 940.
- 6 F. Kaplan und G.K. Meloy, J. Amer. Chem. Soc., 88 (1966) 950.
- 7 Vergl. dazu auch J. Firl, W. Runge und W. Hartmann, Angew. Chem., 86 (1974) 274; Angew. Chem. Int. Ed. Engl., 13 (1974) 270. E. Voigt und H. Meier, Angew. Chem., 87 (1975) 109; Angew. Chem. Int. Ed., 14 (1975) 103; R.O. Duthaler, H.G. Förster und J.D. Roberts, J. Amer. Chem. Soc., 100 (1978) 4974.
- 8 G.A. Gray, J. Amer. Chem. Soc., 95 (1973) 7736; T.A. Albright, M.D. Gordon, W.J. Freeman und E.E. Schweizer, J. Amer. Chem. Soc., 98 (1976) 6249.
- 9 H.J. Bestmann, G. Joachim, I. Lengyel, J.F.M. Oth, R. Merényi und H. Weitkamp, Tetrahedron Lett., (1966) 3355; H.I. Zeeliger, J.P. Snyder und H.J. Bestmann, ibid., (1969) 2199.
- 10 F. Ramirez und S. Dershowitz, J. Org. Chem., 22 (1957) 41; H.J. Bestmann und B. Arnason, Chem. Ber., 95 (1962) 1513; H.J. Bestmann und H. Schulz, Chem. Ber., 95 (1962) 2921; Liebigs Ann. Chem., 674 (1964) 11.